Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Bis(3-phenylallylidene)biphenyl-2.2'-diamine

Saeed Dehghanpour,^a* Farzaneh Afshariazar,^a Shan Gao^b and Seik Weng Ng^c

^aDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, ^bSchool of Chemistry and Materials Science, Heilongijang University, Harbin 150080, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: dehganpour_farasha@yahoo.com

Received 7 January 2009; accepted 7 January 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.110; data-to-parameter ratio = 9.8.

In the title Schiff base, $C_{30}H_{24}N_2$, the complete molecule is generated by a crystallographic twofold axis; the aromatic rings of the biphenyl unit are twisted by 60.78 (1)°. The imine double bond has a trans configuration.

Related literature

For a list of the crystal structures of Schiff bases formed by condensing biphenyl-2,2'-diamine with aldehydes or ketones, see: Dehghanpour et al. (2009).

Experimental

Crystal data

V = 4718.8 (6) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.07 \text{ mm}^{-1}$
T = 295 (2) K
$0.27 \times 0.21 \times 0.10$

Data collection

Rigaku R-AXIS RAPID 11331 measured reflections diffractometer 1427 independent reflections Absorption correction: multi-scan 1021 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.029$ (ABSCOR; Higashi, 1995) $T_{\min} = 0.982, T_{\max} = 0.989$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.110$ S = 1.071427 reflections 145 parameters

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

0.16 mm

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Alzahra University Research Council and Natural Resources, and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2848).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Dehghanpour, S., Asadizadeh, S., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, 0306

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o307 [doi:10.1107/S1600536809000804]

N,N'-Bis(3-phenylallylidene)biphenyl-2,2'-diamine

S. Dehghanpour, F. Afshariazar, S. Gao and S. W. Ng

Experimental

Biphenyl-2,2'-diamine (5 mmol) and cinnamaldehyde (10 mmol) were dissolved in diethyl ether (50 ml). The mixture was stirred for 30 min. Evaporation of the solvent gave a solid that was recrystallized from ethanol twice. Yield: 80%. CH&N elemental analysis. Calculated for $C_{30}H_{24}N_2$: C 87.35, H 5.86, N 6.79%; found: C 87.30, H 5.81, N 9.82%.

Refinement

H atoms were placed in calculated positions [C—H 0.93 Å and $U_{iso}(H)$ 1.2 $U_{eq}(C)$], and were included in the refinement in the riding-model approximation. Friedel pairs were merged

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001); displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. (Symmetry code *i*: -x, -y, z).

N,N'-Bis(3-phenylallylidene)biphenyl-2,2'-diamine

Crystal data	
$C_{30}H_{24}N_2$	$F_{000} = 1744$
$M_r = 412.51$	$D_{\rm x} = 1.161 { m Mg m}^{-3}$
Orthorhombic, Fdd2	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 7049 reflections
<i>a</i> = 15.4354 (12) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 31.783 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 9.6188 (8) Å	T = 295 (2) K
V = 4718.8 (6) Å ³	Cuboid, light yellow
<i>Z</i> = 8	$0.27 \times 0.21 \times 0.16 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID diffractometer	1427 independent reflections

Radiation source: fine-focus sealed tube	1021 reflections with $I > 2\sigma(I)$

supplementary materials

Monochromator: graphite	$R_{\rm int} = 0.029$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -20 \rightarrow 19$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -41 \rightarrow 41$
$T_{\min} = 0.982, T_{\max} = 0.989$	$l = -12 \rightarrow 12$
11331 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.110$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0608P)^2 + 0.8672P]$ where $P = (F_o^2 + 2F_c^2)/3$
1427 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
145 parameters	$\Delta \rho_{max} = 0.11 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.01193 (13)	0.05064 (6)	0.5676 (2)	0.0523 (5)
C2	-0.02328 (13)	0.02045 (6)	0.4634 (2)	0.0541 (5)
C3	-0.07746 (15)	0.02974 (7)	0.3523 (3)	0.0641 (6)
H3A	-0.0859	0.0097	0.2831	0.077*
C4	-0.11943 (16)	0.06833 (8)	0.3424 (3)	0.0724 (7)
H4A	-0.1561	0.0739	0.2679	0.087*
C5	-0.10622 (16)	0.09796 (7)	0.4433 (3)	0.0695 (7)
H5A	-0.1333	0.1240	0.4363	0.083*
C6	-0.05334 (14)	0.08962 (6)	0.5546 (3)	0.0609 (6)
H6A	-0.0449	0.1101	0.6223	0.073*
C7	0.03355 (16)	0.05664 (7)	0.7976 (3)	0.0598 (6)
H7A	-0.0185	0.0702	0.8165	0.072*
C8	0.09664 (17)	0.05217 (7)	0.9066 (3)	0.0629 (6)
H8A	0.1467	0.0370	0.8870	0.075*
C9	0.08822 (15)	0.06818 (7)	1.0333 (3)	0.0637 (6)

H9A	0.0374	0.0829	1.0516	0.076*
C10	0.15066 (15)	0.06500 (7)	1.1471 (3)	0.0588 (6)
C11	0.22801 (16)	0.04272 (7)	1.1346 (3)	0.0669 (6)
H11A	0.2417	0.0301	1.0502	0.080*
C12	0.28461 (18)	0.03901 (9)	1.2443 (3)	0.0771 (8)
H12A	0.3361	0.0241	1.2337	0.093*
C13	0.2651 (2)	0.05718 (9)	1.3688 (3)	0.0822 (8)
H13A	0.3033	0.0547	1.4431	0.099*
C14	0.18916 (19)	0.07916 (10)	1.3845 (3)	0.0829 (8)
H14A	0.1758	0.0913	1.4697	0.099*
C15	0.13291 (17)	0.08318 (8)	1.2745 (3)	0.0703 (7)
H15A	0.0820	0.0984	1.2860	0.084*
N1	0.04738 (12)	0.04246 (5)	0.6758 (2)	0.0584 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0562 (11)	0.0430 (9)	0.0576 (14)	0.0011 (8)	0.0025 (11)	0.0017 (9)
C2	0.0626 (11)	0.0412 (10)	0.0584 (14)	0.0000 (9)	0.0012 (11)	0.0017 (9)
C3	0.0792 (15)	0.0510(11)	0.0622 (15)	0.0019 (11)	-0.0095 (13)	-0.0006 (11)
C4	0.0809 (15)	0.0638 (13)	0.0725 (16)	0.0109 (12)	-0.0124 (14)	0.0089 (12)
C5	0.0807 (15)	0.0509 (11)	0.0770 (18)	0.0140 (11)	0.0009 (15)	0.0072 (12)
C6	0.0714 (13)	0.0432 (9)	0.0681 (15)	0.0043 (9)	0.0024 (13)	-0.0018 (10)
C7	0.0649 (13)	0.0496 (11)	0.0648 (16)	-0.0036 (10)	-0.0008 (13)	0.0007 (11)
C8	0.0707 (14)	0.0538 (11)	0.0641 (16)	0.0005 (10)	-0.0006 (12)	-0.0019 (12)
C9	0.0645 (13)	0.0638 (13)	0.0627 (16)	0.0013 (11)	0.0043 (13)	-0.0040 (12)
C10	0.0632 (13)	0.0539 (11)	0.0593 (14)	-0.0054 (10)	0.0053 (12)	-0.0010 (10)
C11	0.0663 (14)	0.0743 (14)	0.0600 (16)	0.0005 (11)	0.0086 (12)	0.0008 (12)
C12	0.0688 (15)	0.0864 (18)	0.076 (2)	0.0019 (13)	0.0035 (14)	0.0137 (15)
C13	0.0814 (17)	0.0908 (19)	0.074 (2)	-0.0112 (15)	-0.0109 (17)	0.0062 (16)
C14	0.100 (2)	0.0861 (17)	0.0621 (18)	-0.0064 (16)	-0.0005 (17)	-0.0145 (15)
C15	0.0763 (15)	0.0673 (13)	0.0673 (17)	0.0006 (12)	0.0044 (14)	-0.0112 (13)
N1	0.0707 (11)	0.0445 (8)	0.0599 (13)	0.0019 (8)	-0.0044 (10)	-0.0029 (9)

Geometric parameters (Å, °)

C1—C2	1.399 (3)	C8—C9	1.327 (4)
C1—C6	1.400 (3)	C8—H8A	0.9300
C1—N1	1.410 (3)	C9—C10	1.461 (3)
C2—C3	1.389 (3)	С9—Н9А	0.9300
C2—C2 ⁱ	1.485 (4)	C10—C15	1.383 (4)
C3—C4	1.390 (3)	C10—C11	1.393 (3)
С3—НЗА	0.9300	C11—C12	1.375 (4)
C4—C5	1.368 (4)	C11—H11A	0.9300
C4—H4A	0.9300	C12—C13	1.362 (4)
C5—C6	1.373 (4)	C12—H12A	0.9300
С5—Н5А	0.9300	C13—C14	1.373 (4)
С6—Н6А	0.9300	C13—H13A	0.9300

supplementary materials

C7—N1	1.273 (3)	C14—C15	1.375 (4)
С7—С8	1.438 (4)	C14—H14A	0.9300
С7—Н7А	0.9300	C15—H15A	0.9300
C2—C1—C6	119.1 (2)	С7—С8—Н8А	117.8
C2—C1—N1	118.93 (17)	C8—C9—C10	126.6 (2)
C6—C1—N1	121.7 (2)	С8—С9—Н9А	116.7
C3—C2—C1	118.76 (18)	С10—С9—Н9А	116.7
C3—C2—C2 ⁱ	118.52 (15)	C15—C10—C11	117.3 (2)
$C1-C2-C2^{i}$	122.67 (16)	C15—C10—C9	120.3 (2)
C2—C3—C4	121.4 (2)	C11—C10—C9	122.4 (2)
С2—С3—НЗА	119.3	C12—C11—C10	121.5 (3)
С4—С3—НЗА	119.3	C12—C11—H11A	119.3
C5—C4—C3	119.3 (3)	C10-C11-H11A	119.3
С5—С4—Н4А	120.4	C13—C12—C11	119.8 (3)
С3—С4—Н4А	120.4	C13—C12—H12A	120.1
C4—C5—C6	120.6 (2)	C11—C12—H12A	120.1
С4—С5—Н5А	119.7	C12-C13-C14	120.1 (3)
С6—С5—Н5А	119.7	С12—С13—Н13А	120.0
C5—C6—C1	120.8 (2)	C14—C13—H13A	120.0
С5—С6—Н6А	119.6	C13—C14—C15	120.1 (3)
C1—C6—H6A	119.6	C13—C14—H14A	119.9
N1—C7—C8	121.5 (2)	C15—C14—H14A	119.9
N1—C7—H7A	119.3	C14-C15-C10	121.2 (2)
С8—С7—Н7А	119.3	C14—C15—H15A	119.4
C9—C8—C7	124.4 (2)	C10-C15-H15A	119.4
С9—С8—Н8А	117.8	C7—N1—C1	120.32 (19)
C6—C1—C2—C3	-1.9 (3)	C8—C9—C10—C15	-179.7 (2)
N1—C1—C2—C3	-175.9 (2)	C8—C9—C10—C11	-2.0 (4)
C6—C1—C2—C2 ⁱ	175.3 (2)	C15—C10—C11—C12	-0.2 (4)
N1—C1—C2—C2 ⁱ	1.4 (3)	C9—C10—C11—C12	-177.9 (2)
C1—C2—C3—C4	0.7 (3)	C10-C11-C12-C13	0.4 (4)
C2 ⁱ —C2—C3—C4	-176.6 (2)	C11-C12-C13-C14	0.0 (5)
C2—C3—C4—C5	0.8 (4)	C12-C13-C14-C15	-0.5 (5)
C3—C4—C5—C6	-1.1 (4)	C13-C14-C15-C10	0.7 (5)
C4—C5—C6—C1	-0.1 (4)	C11-C10-C15-C14	-0.4 (4)
C2—C1—C6—C5	1.7 (3)	C9-C10-C15-C14	177.4 (2)
N1—C1—C6—C5	175.4 (2)	C8—C7—N1—C1	-174.1 (2)
N1—C7—C8—C9	176.2 (2)	C2—C1—N1—C7	-147.5 (2)
C7—C8—C9—C10	-179.2 (2)	C6—C1—N1—C7	38.7 (3)
Symmetry codes: (i) $-x, -y, z$.			

